# 第六章、二重积分

# 知识点

# 二重积分的概念

  • Df(x,y)dσ=limd0k=1nf(ξk,ηk)Δσk\iint\limits_Df(x,y)d\sigma = \lim_{d \to 0}\sum_{k=1}^nf(\xi_k,\eta_k)\Delta\sigma_k

# 二重积分的几何意义

  • 二重积分Df(x,y)dσ\iint\limits_Df(x,y)d\sigma 是一个数,当f(x,y)0f(x,y)\ge0 时,其值等于以积分域DD 为底,以曲面z=f(x,y)z=f(x,y) 为曲顶的曲顶柱体的体积

# 二重积分的性质

# 不等式性质

  • f(x,y)g(x,y),Df(x,y)dσDg(x,y)dσ若f(x,y) \le g(x,y), 则\iint\limits_Df(x,y)d\sigma\le\iint\limits_Dg(x,y)d\sigma
  • f(x,y)D上连续,mSDf(x,y)dσMS若f(x,y)在D上连续,则mS\le\iint\limits_Df(x,y)d\sigma\le MS
  • Df(x,y)dσDf(x,y)dσ|\iint\limits_Df(x,y)d\sigma|\le\iint\limits_D|f(x,y)|d\sigma

# 积分中值定理

  • f(x,y)D上连续,Df(x,y)dσDf(ξ,η)S若f(x,y)在D上连续, 则\iint\limits_Df(x,y)d\sigma\le\iint\limits_Df(\xi,\eta)S

# 二重积分计算

# 利用直角坐标计算

  • yx:Df(x,y)dσ=abdxy1(x)y2(x)f(x,y)dy=ab[y1(x)y2(x)f(x,y)dy]dx先y后x: \iint\limits_Df(x,y)d\sigma=\int_a^bdx\int_{y_1(x)}^{y_2(x)}f(x,y)dy=\int_a^b[\int_{y_1(x)}^{y_2(x)}f(x,y)dy]dx
  • xy:Df(x,y)dσ=cddyx1(y)x2(y)f(x,y)dx=ab[x1(y)x2(y)f(x,y)dx]dy先x后y: \iint\limits_Df(x,y)d\sigma=\int_c^ddy\int_{x_1(y)}^{x_2(y)}f(x,y)dx=\int_a^b[\int_{x_1(y)}^{x_2(y)}f(x,y)dx]dy

# 利用极坐标计算

  • Df(x,y)dσ=αβdyr1(θ)r2(θ)f(rcosθ,rsinθ)rdr\iint\limits_Df(x,y)d\sigma=\int_\alpha^\beta dy\int_{r_1(\theta)}^{r_2(\theta)}f(r\cos\theta, r\sin\theta)rdr
  • 适合用极坐标计算的被积函数:
    f(x2+y2),f(yx),f(xy)f(\sqrt{x^2+y^2}), f(\frac{y}{x}), f(\frac{x}{y})
  • 适合用极坐标的积分域:
    x2+y2R2;r2x2+y2;x2+y22ax;x2+y22byx^2+y^2\le R^2; r^2\le x^2+y^2; x^2+y^2\le 2ax; x^2+y^2\le 2by

# 利用对称性和奇偶性计算

  • 若积分域D关于y轴对称,若积分域D关于y轴对称, 则
    Df(x,y)dσ={2x0f(x,y)dσ;f(x,y)=f(x,y)0;f(x,y)=f(x,y)\iint\limits_Df(x,y)d\sigma=\left\{ \begin{aligned} &2\iint\limits_{x\ge0}f(x,y)d\sigma;&f(-x,y)=f(x,y)\\ &0;&f(-x,y)=-f(x,y) \end{aligned} \right.
  • 若积分域关于x轴对称,若积分域关于x轴对称, 则
    Df(x,y)dσ={2y0f(x,y)dσ;f(x,y)=f(x,y)0;f(x,y)=f(x,y)\iint\limits_Df(x,y)d\sigma=\left\{ \begin{aligned} &2\iint\limits_{y\ge0}f(x,y)d\sigma;&f(x,-y)=f(x,y)\\ &0;&f(x,-y)=-f(x,y) \end{aligned} \right.

# 利用变量对称性计算

  • D关于y=x对称,若D关于y=x对称, 则
    Df(x,y)dσ=Df(y,x)dσ,特别的:Df(x)dσ=Df(y)dσ\iint\limits_Df(x,y)d\sigma=\iint\limits_Df(y,x)d\sigma, 特别的: \iint\limits_Df(x)d\sigma=\iint\limits_Df(y)d\sigma

# 考点

# 计算二重积分

# 累次积分交换次序及计算

# 与二重积分有关的综合题

# 与二重积分有关的不等式问题

更新于 阅读次数